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Abstract

In computational neuroscience, a core objective is to identify canonical computations — fun-
damental operations that are integral to the brain’s processing of behavior and stimuli and
central building blocks for neural circuits. The translation of these computations to observable
behavior, however, remains elusive.

This work examines temporal adaptation, a normalizing process believed to be universally
utilized throughout the brain, that modulates neuronal activity based on recent activation
within the same or adjacent neurons. Because manipulating this process in vivo is challeng-
ing, we explore its behavioral implications through artificial intelligence models equipped with
temporal adaptation.

We demonstrate that reliance on gradient descent for training these models may lead to
deceptive outcomes, where model behavior aligns with expectations, but the underlying mech-
anisms diverge significantly from our intuition. Our experiments involve training models with
divisive normalization and additive adaptation enhancements for an object recognition task,
specifically designed to suppress stationary noise. These models display markedly different
behaviors from those with preset adaptation parameters, suggesting that simply incorporating
brain-like features is not sufficient. Detailed examination of the models’ internal processes is
imperative to establish their congruence with brain-like functionality.

We present a successful application scenario where a model is trained on a novel object
recognition task that necessitates adaptation. Through mechanistic analysis, we confirm the
model’s use of adaptation and its resemblance to human neural activity patterns.

In conclusion, while it is crucial to design task-driven models, a thorough mechanistic in-
vestigation is essential to validate whether the model’s problem-solving approach is analogous
to that suggested by neural measurements in humans.



Chapter 1

Introduction

To understand how intelligent systems produce complex behavior, we often try to decompose
them into smaller components that are easier to understand. These components, or models,
need to satisfy two constraints: They need to be interpretable for humans, and they have to
have predictive power. Numerous lines of evidence suggest that the brain, but also AI models,
can indeed be decomposed into modular units. For example, brain functions like memory,
visual perception, or speech are localized and ablating associated brain regions leads to a loss
of function [25, 5]. The same principle applies to AI models: Language models use their first
layers for detokenization and compound words, perform text processing and action selection
in middle layers, and retokenize in their final layers. Within this framework, concrete and
localized circuits that solve a specific task of interest can be found. A good example is the
Indirect Object Identification circuit [27] in which only 1.1% of attention heads determine the
model’s decision between two names. Moreover, factual knowledge can be localized to specific
layers [17].

During the past decades, huge efforts were made in Cognitive Neuroscience to map behavior
to localized regions and enhance our understanding of how computation is distributed. How-
ever, localizationism failed to be specific enough to understand how concrete circuits compute
behavior and it seems that we reached a limit in the minimum size of interpretable chunks with-
out understanding how individual patches create behavior. Instead, we argue that researching
modularity in computation rather than functional localization is more informative of how neu-
ral activity translates to behavior. Specifically, our goal is to identify canonical algorithms that
are utilized across regions and circuits that can help explain on a lower level how a circuit’s
behavior is actually computed. In large language models (LLMs), this approach has already
been successfully demonstrated. For example, induction heads have been proposed as such a
canonical operation [19]: In a sequence A, B, ..., A —7, they predict B by attending to the first
occurrence of B and copying its value (attending to B can be achieved by a ”previous token”
head that copied contents from A to B at position B in a preceding layer). This mechanism is
used to e.g. repeat sequences but remarkably, it has been proposed that the concept of ”induc-
tion” is also utilized for abstract features and canonical operations which is used throughout
the model. Most importantly, the authors claim that induction can explain the majority of
in-context learning, one of the most important emergent capabilities of LLMs [19].

Divisive Normalization as a canonical operation With approaches like this, would
it be possible to identify such canonical computations in the brain and link them to concrete
behaviors? Here, we investigate one such proposed operation, namely divisive normalization.
Divisive normalization is a nonlinear operation that divides a neuron’s output based on summed
activation values of other units. The units used for division determine the function and can be
neurons with adjacent receptive fields, neurons within the same receptive field that represent
different or similar features, the neuron’s own recent activity, or recurrent connections.
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Figure 1.1: Temporal Dynamics of Neuronal Response and State in Divisive Nor-
malization. The plot illustrates the neuron’s response R; and the feedback signal variable
G(t) over time. Response to the second stimulus is suppressed because of the neuron’s recent
activity. R; is normalized with its own historic activity.

Divisive normalization has been observed in numerous brain regions. In the retina, nor-
malization helps to adapt neurons to different light intensities to keep sensitivity for different
ranges of lights despite a limited dynamic range [8]. Light intensities range over 10 magni-
tudes and while anatomical mechanisms help to reduce this range [21], further adaptation is
still needed and implemented via normalization [18]. In the primary visual cortex (V1), neural
responses saturate with increasing stimulus contrast while keeping sensitivity to low contrasts
which can be explained by temporal or spatial normalization [1, 13]. In addition, normalization
leads to cross-orientation inhibition [3], a mechanism that suppresses a neuron’s response if
another stimulus that the neuron wouldn’t respond to if presented alone, is present. Normal-
ization in V1 also leads to max-pooling because the presence of multiple stimuli increases the
divisive term, effectively suppressing stimuli with low salience or contrast [7]. It is hypothe-
sized that divisive normalization is widely used throughout the visual pathway and the entire
cortex. For example, in the velocity-selective middle temporal area (MT), normalization might
help to make Vl-receiving MT-neurons invariant to spatial patterns [23], and in the ventral
pathway (V4, IT), normalization might drive adaptation to complex or even intermodal stim-
uli [28, 20]. However, obtaining direct evidence is difficult because it’s unclear whether the
observed normalization effect originates there or is inherited from preceding regions like V1.

Given the widespread application of divisive normalization in various neural circuits, it’s
crucial to delve deeper into its fundamental mechanics. At its core, different mathematical
models have been suggested, each capturing unique aspects of neural processing. Typically [6],
the response R; of neuron ¢ is modelled as

L
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with L; being the rectified (linear) response of neuron 7, which is exponentiated by a constant
n;. o is a semi-saturation constant that determines the asymptote of the response and effectively
limits the amount of suppression. The neuron’s linear response L; is divisively normalized by the
sum of neighboring neurons L. Which neurons are included in the sum determines the function
and is often selected to study a particular observation. For example, spatial normalization
divides by neurons with neighboring receptive fields. This can lead to an enhancement of spatial
features like edges. If multiple neighboring neurons detect an edge, normalization suppresses

the less responsive neurons while the winner-takes-it-all which effectively enhances precision.
Spatial normalization can also lead to contrast adaptation where stimuli of different contrasts

R, = (1.1)



evoke responses of similar size that effectively utilize the neuron’s dynamic range.

While spatial normalization facilitates edge detection and contrast adaptation by consid-
ering adjacent receptive fields, feature-wise normalization extends the normalization pool to
encompass a range of feature detectors, thereby modulating the neuron’s response in a feature-
selective manner. This enables a contextual modulation of neural responses that is sensitive to
the distribution and strength of multiple different features. For example, the presence of multi-
ple features, or features with different contrasts or saliency can lead to suppression of features
that would evoke a great response if presented alone. This stabilizes the overall output scale
and enhances salience of important features. Cross-orientation inhibition might be a direct
result of this.

Transitioning from the spatial and feature domains, we acknowledge that neural compu-
tations are not static but inherently temporal. Temporal divisive normalization represents
a fundamental yet frequently understated aspect of neural processing, emphasizing the im-
portance of stimuli dynamics over time in shaping neural responses. Different functions for
temporal normalization have been proposed: It might explain 'neural fatigue’, the decrease in
output for constant stimuli, and it might enable response enhancement by suppressing interfer-
ing or noisy stimuli. Lastly, it might contribute to bottom-up attention by decreasing salience
of static stimuli. A mathematical framework was originally suggested by Heeger [13, 14| and
defines a neuron’s response R; recursively as

Ri(t) = [Li(t) VR =Gt = 1)] (1.2)

g

where K is a constant that determines the maximum attainable response, ¢ the time, and
R;, L;, and o as defined in 1.1. G is a feedback signal that determines the amount of suppression
based on preceding temporal activity of the same or neighboring neurons and is given by

Git)=(1-a)G(t—1)+a) R(t—1) (1.3)

G(t) integrates past activity and discounts it exponentially with a constant « that deter-
mines the rate of change (Figure 1.1). G(¢) is an inhibitory signal such that strong activity
leads to local suppression of R;. R; is the response of all neurons j that are used to normalize a
given neuron. This can be neighboring neurons, the global population, or the neuron of interest
itself.

How K and o shape the form and sensitivity of adaptation is illustrated in Figure 1.2. With
respect to the maximal response and the saturated response (the response after the stimulus
is shown long enough for the response to converge), K doesn’t affect adaptation. However, K
determines the maximum amount of suppression for a given input value. If the input values
are much smaller than K, it might not be possible for the feedback signal G(t) to grow to a
size that is a considerable fraction of K, and in that instance, the total amount of inhibition is
limited (Figure 1.2).

Low values for o on the other hand scale the linear response, which leads to a larger response
but because of that, also to a faster increase in G and thus to faster adaptation. In addition,
it determines the height of the saturated response but while K does this additively, o controls
this divisively (Figure 1.2).

While a combination of divisive operations across time, location, and features might best
approximate the mechanisms in the brain, our paper will primarily explore temporal normaliza-
tion, an aspect that remains under-investigated yet holds significant potential for understanding
dynamic neural processing. In this study, we augment artificial neural networks with temporal
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Figure 1.2: Influence of Parameters K and Sigma on Temporal Divisive Normal-
ization. This figure displays the neuron’s response R;(t) and feedback signal G(t) across two
scenarios: varying K (left) and varying o (right). Each line represents a different value of K
or o, showcasing how these parameters modulate the neuron’s response and feedback dynamics
over time. The dashed lines indicate the state variable G(t), illustrating its integral role in the
neuron’s adaptive response to stimuli.

adaptation mechanisms and study if they can be successfully utilized and if they are a plausible
explanation for a range of behavioral observations.

While evidence of divisive computations in the brain is well-documented, the direct link
between these computations and the resulting behaviors remains elusive. To bridge this gap,
our research focuses on assessing how adaptation can give rise to specific behaviors. To achieve
this, we augment AI models with divisive normalization layers. By training these enhanced
models on tangible tasks, we aim to shed light on whether divisive normalization can be actively
employed by artificial systems and, more importantly if it stands as a plausible model for
explaining behavior. This approach marks a significant shift from traditional studies, as we
move towards a task-driven model evaluation.



Chapter 2

Methods

2.1 Models

Throughout the experiments, we use standard Pytorch convolutions and linear layers. Models
were trained using the Adam optimizer, a learning rate of 0.001, and were optimized to minimize
the categorical cross entropy using stochastic gradient descent with a batch size of 64. For
fashion-mnist models trained on the noise suppression task, three convolutional layers were
followed by a single linear layer. The convolutions had 32 feature maps each and a kernel
size of 5, 5, and 3. The linear layer had a dimensionality of 1024 which was reduced by the
decoder to 10 output neurons. For Cifar10 models, we increased the number of feature maps to
32, 64, and 64. For fashion-mnist models trained on the novel object task, we added a fourth
convolutional layer between the last convolution and the linear layer with 32 feature maps. After
each convolution, ReLU and max-pooling were applied. For the noise suppression experiment,
the class was decoded at the last timestep. For the novel object task, every timestep was
decoded. 50% dropout was applied after the last convolution. Models for the noise suppression
task were trained for 20 epochs with 60000 images per epoch. For the novel object detection
task, models with a single adaptation layer were trained 10 epochs, and models with multiple
adaptation layers were trained 50 epochs. All models converged well before training ended. For
the baseline model, no adaptation mechanism was added such that all images were processed
independently.

2.2 Datasets

Noise Suppression: Each input sample consisted of three sequential images processed by the
recurrent CNN. The first image, referred to as the ’adapter image,” contained noise intended for
adaptation. This noise, generated uniformly between -0.5 and 0.5, was superimposed onto the
mean of the test image, then clamped to the range [0, 1]. This procedure ensured consistency
in the mean luminance of the sequence, preventing abrupt transitions in brightness.

The second image in the sequence was blank, its color set to the mean of the test image.
The third image, termed the 'test image,” combined the same noise pattern used in the adapter
image with the object-containing test image, which was to be classified.

To modulate the contrast of the test image, its contrast was randomly altered to either 100%
or 20% for each instance. The contrast adjustment was performed according to the following
formula:

Adjusted Image = Mean Image + Contrast Level x (Original Image — Mean Image) (2.1)



In this formula, ” Adjusted Image” represents the contrast-modified image, ” Mean Image” is
the mean luminance of the original image, ”Contrast Level” is the desired contrast ratio (either
100% or 20%), and ”Original Image” is the unmodified image.

Different noise patterns were sampled for each epoch to ensure variability and robustness
in learning.

Novel Object Recognition: Each input sample was composed of a sequence of 20 images,
each sequentially fed to the model. Every image in the sequence was associated with a single
label derived from the Fashion MNIST dataset. The dimensions of each image were 56x56
pixels, designed to accommodate a grid arrangement of four Fashion MNIST images (‘objects’)
without overlap. For clarity, the term ”image” refers to the composite image created for the
model, while "object” denotes an individual Fashion MNIST image within the larger image.
The location of each object on the composite image was randomly determined, ensuring that
the positions of objects were distinct and non-overlapping within an image. Furthermore, the
location of a given object remained constant throughout the 20-image input sequence.

The appearance (or ’onset’) of each object within the sequence was randomized. However,
every sequence was structured to include at least one object that appeared in the very first
image. The contrast of each object varied randomly between 0 and 1. The task for the model
was to predict the object introduced at the current timestep. In cases where no new object was
added at a timestep, the model’s objective was to identify the most recently added object. If
multiple objects appeared simultaneously in a timestep, the model was trained to predict the
object with the highest contrast.

Novel Object Recognition with augmented images: This task mirrored the previ-
ous experiment, with the addition of image augmentation techniques applied to each object
independently. The augmentations were designed to intensify over the sequence, resulting in
more substantial changes than those within a single timestep. The augmentation procedures
included:

e Rotation: Objects were subjected to random rotations, varying between -12 and +12
degrees.

e Translation: A random uniform translation was applied in both the x and y directions,
ranging from 0 to 4 pixels.

e Scaling: Objects underwent random uniform scaling, with factors between 0.9 and 1.1.
e Shear: Random shear transformations were applied, with angles from -5 to 5 degrees.

e Gaussian Noise: Gaussian noise, with a standard deviation of 0.1, was added to the
images.

e Brightness Adjustment: The brightness of objects was randomly altered, with adjust-
ment factors from 0.8 to 1.2.

e Contrast Adjustment: Contrast was also randomly adjusted, with factors ranging from
0.8 to 1.2.

After applying these augmentations, the image was clamped to maintain valid pixel value
ranges.



2.3 Adaptation Layers

Additive Adaptation: Adaptation was applied after convolution and ReLLU and defined as
described in [26]:

Gi(t) = aGy(t — 1) + (1 — &) Ri(t — 1) (2.2)

Ri(t) = ©(Li(t) — Gi(t)) (2.3)

L; is the activation of a single unit ¢ of the model after the convolution and ReLLU, G, is the
latent state for unit ¢ that tracks the amount of suppression, ® is the activation function RelLU,
and « and  are parameters that influence the duration and strength of adaptation. They were
initialized with o = 0.5 and § = 1. In supplementary experiments, we zero-initialized them
and observed that they converge to the same values but take more time to train. The state G
was zero-initialized at the first timestep.

Divisive Normalization: Adaptation was applied after convolution and ReLLU and defined
as described in [13, 14]:

Ri(t) = ® | L;(t) K- f(t ) (2.4)
G(t)= (1 - a)G(t — 1)+ aRi(t — 1) (2.5)

where K is a constant that determines the maximum attainable response, t the time, and
R;, L;, and o as defined in 1.1. G is a feedback signal that determines the amount of suppression
based on preceding temporal activity of the same or neighboring neurons. We initialized the
parameters with X = 0.3, 0 = 0.3, and a = 0.1.



Chapter 3

Results

3.1 Augmenting CNNs with temporal adaptation capa-
bilities to suppress recurring noise

Our primary goal is to determine if mechanisms like divisive normalization and additive adap-
tation can be effectively integrated into the training of specific computational models. By
training artificial deep neural networks that demonstrably employ these mechanisms for cer-
tain tasks, we can infer that the proposed computations are plausible for accomplishing these
tasks. Subsequently, we can examine the trained model further, comparing it with neural or
behavioral data from humans to ascertain if it realistically represents certain neural circuits.

This method stands in contrast to other computational strategies that either fit models
to neural data or deliberately design them to exhibit specific characteristics. While these
traditional approaches are useful for demonstrating the existence of certain computations or
for explaining observations, they often fall short of elucidating how known computations or
circuits influence behavior.

Our approach addresses this gap by focusing on training models to learn specific tasks or
behaviors, rather than directly fitting them to neural data. This allows for a more straight-
forward examination of the model’s internal workings compared to human or animal studies.
Essentially, if we can demonstrate that Al models effectively use adaptation mechanisms for
real-world tasks, and if the learned algorithms closely align with in-vivo findings, it supports
the notion that adaptation is a viable strategy for the tasks under study.

In pursuit of this, we have taken a standard convolutional neural network (CNN) as our
base architecture and enhanced it with capabilities for recurrent (temporal) adaptation, aiming
to scrutinize the influence of these mechanisms on the model’s performance. This approach is
inspired by the work presented in Vinken et al. [26], where they posit that intrinsic suppression,
modeled as an additive adaptation mechanism, serves to eliminate interfering but temporally-
constant noise from the data. The authors use a task-driven approach to train a model to
suppress static noise to increase the signal-to-noise ratio in its activations which can push ac-
curacy. A critical aspect of their findings is the superior generalization exhibited by models
incorporating this adaptation, supporting the widely shared view that inductive biases and so-
phisticated architectures lead to leaner (less parameterized) models that exhibit less overfitting
and better generalization. Besides these results, they manually augment a pre-trained AlexNet
[16] and show that a variety of effects measured in the brain also emerged there. For example,
they observe signs of repetition suppression and report visual aftereffects that bias the models’
decision away from an adapter.

The crucial detail, however, remains missing: Relating the task-driven model to the obser-
vations made on the modified AlexNet. With the latter, they showed that they can manually
tune adaptation parameters of a neural network such that desired characteristics emerge. With



the task-driven model on the other hand, they show that deep neural networks can utilize adap-
tation mechanisms to boost their performance. While one might assume that both observations
combine to ” Neural networks can use temporal adaptation to suppress continuous noise, similar
to adaptation in the human visual cortex”, we investigate this claim more thoroughly and show
that this is not always the case.

We attempted to replicate Vinken et al’s [26] experiments (Figure 7) that show that an
intrinsic suppression mechanism can be used to suppress recurring noise patterns and that this
generalizes much better than a fully recurrent model.

The task consisted of three images that were presented to the model subsequently (Figure
3.1). The first image, also called "adapter”, is uniform noise and is followed by a blank image.
The final image, which will be decoded, is the sum of a cifar10 image that the model should
classify, and uniform noise. Crucially, the noise pattern between the first and third image is
identical, such that remembering information from the first image can help to denoise the third
image. To make this transfer of information possible, we added recurrent connections that
implemented the adaptation mechanism. We tested two different models. First, we replicate
the intrinsic suppression model used in Vinken et al where a neuron’s response R; is given by

Gi(t) = aGi(t — 1) + (1 — @) Ry(t — 1) (3.1)

Ri(t) = ©(Li(t) — BGi(t)) (3.2)

Here, L; is the neuron response before suppression, ® the activation function ReLLU, G; is
a latent state that holds information about recent neural activity used for adaptation, and «
and 3 are two constants that determine the timescale and strength of adaptation, respectively.

Second, we test a divisive normalization model originally introduced by Heeger [13, 14] and
given by

Ri(t) = @ <Li<t> Koot ”) (33)
Gt)=(1—a)Gt—1)+ad Ri(t—1) (3.4)

as outlined in the introduction. Note that the square root and the squaring operation
are technically unnecessary because they can easily be implemented by the convolutions if
advantageous but we leave them here for better interoperability. While divisive normalization
is thought to rely on recurrent or lateral connections in most settings, our definition normalizes
solely to a neuron’s own historical activity. As such, this mechanism could also be implemented
intrinsically. In this case, the main difference between both ideas is the additive or divisive
nature of the normalization operation.

Deviating from Vinken et al, we only apply adaptation in a single layer (Figure 3.1b).
Because the noise pattern is static, a single layer is able to solve the task and a single adaptation
operation is much easier to interpret and understand. We train the models till convergence and
set the contrast of the cifar10 image randomly to 0.2 or 1.0. A baseline model without recurrent
connections achieved an accuracy of around 50% for the high-contrast images (Chance level is
10%) that considerably dropped to less than 30% for the low-contrast images, illustrating
the challenge to separate a weak signal from a very noisy background. Remarkably, both
adaptation models achieve higher accuracies compared to the baseline, indicating that they
utilize the adaptation mechanism. The accuracy gain was higher for the low-contrast image,
suggesting that normalization helped to reduce noise and to raise the signal-to-noise ratio for
these images considerably (Figure 3.1c).



We then test how these models generalize to different types of noise. First, we test them
on cifarl0 images with a contrast of 0.4, 0.6, and 0.8 and observe that they perform similarly
to the contrasts they were trained on (Figure 3.1d). Then, we tested on gaussian noise, a type
of noise the models weren’t trained on, and varied the variance of the noise (Figure 3.1e) or
its mean (Figure 3.1f). Both tests resulted in performance similar to when tested on noise
patterns the models were trained on, and only dropped slightly for very high variances, while
accuracy dropped stronger for the baseline model. Also, the divisive normalization model
showed these generalization abilities though its overall accuracy was a bit lower compared to
the additive model. Thus, following Vinken et al [26], we conclude that the models trained
with an adaptation mechanism generalize to different noise patterns.

Figure 3.1: Adaptation-augmented models learn a temporal noise suppression task
but collapse a) An input sample consists of three images that are fed sequentially to the
model. The first image is sampled from uniform noise and followed by a blank image. The
third image interleaves the same noise with a low-contrast cifar10 image and has to be classified.
b) A schematic of the model. We train an ordinary 3-layer CNN followed by a linear layer. We
introduce an additive or divisive adaptation mechanism in the first layer, the only connection
that shares information between images. ¢) Models were trained on a mix of high- and low-
contrast images and can learn the classification task. d) Generalization to different contrasts.
Note that the model was only trained on the grey contrasts. e Generalization to different noise
patterns. Models were trained on uniform noise but tested on Gaussian noise with different
variances. The dashed lines mark the average accuracy of each model when tested on the noise
patterns they were trained on. f) Same as e, but in addition the mean of the noise is offset.
g) Same as e and f, but the noise from the model’s training distribution is used but spatially
shifted between images. h) Generalization to unseen noise: Greyscale bars mark accuracy when
noise is repeated between images, as is in the training data. Red bars mark accuracy when
tested on the same noise pattern but noise is resampled between images. i) Resampling noise
leads to off-distribution activations. Images show the activation values of all feature maps of a
single sample after the first layer. For "novel noise”, the noise in the adapter and test step is
different.

3.2 Training adaptation-augmented neural networks can
lead to an illusory sense of interpretability

Are these models faithful representations of adaptation in the visual cortex? While enhancing
generalization capabilities in neural networks is a notable objective in itself, our primary aim
is to determine whether our adaptation implementation can accurately model brain adaptation
mechanisms. Hence, it is crucial to understand how the model employs the adaptation mech-
anism and whether this mirrors neural observations. According to Vinken et al. [26], models
with manually set adaptation parameters exhibit perceptual bias and enhanced discriminability
aftereffects, which are commonly linked to adaptation effects in the human brain. However,
we argue that these findings may not directly apply to models trained from scratch with adap-
tation mechanisms. The reason for this caution is the uncertainty about whether the model
discovers an alternative, perhaps previously unconsidered, approach to task resolution. Gra-
dient descent, known for its strong optimization capabilities, has led to unforeseen behaviors
in various instances. For instance, models trained via reinforcement learning might develop
undesirable behaviors that yield high rewards due to imperfectly calibrated reward functions
[24]. In convolutional neural networks (CNNs), gradient-based feature visualization techniques
can be deceptive, displaying random patterns that create a false sense of interpretability [12].
Similarly, large language models are thought to leverage the basis-dependent momentum in
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the Adam optimizer [10] to learn specific "landfill” dimensions in the residual stream, which
are used to store output of components that do not contribute data [2, 9]. This highlights the
necessity of a detailed mechanistic analysis when training models using gradient descent.
Because a data sample consists of only three images and we added the adaptation mechanisms
after only one layer, the learned parameters are readily interpretable: The additive suppression
model learned parameters o = 0.43 and 5 = 4.14. Because the second image is blank and does
not activate any neurons, the state of the test image only depends on the adapter image. The
response for the test image R3 can thus be written as

Ry=Ls—Lixaxaxf (3.5)

Because a * ax =~ 1, the model essentially learned to subtract all noise features from the test
image! This behavior is advantageous for the model as completely subtracting the noise will
result in the best signal-to-noise ratio. However, it wouldn’t resemble visual cortex functioning
which is our precondition to studying the behavior of this model. To show that the model’s
generalization capability indeed arises from simple subtraction of the noise, we perform a simple
experiment: Instead of changing the noise patterns we test the network on, we use noise patterns
the model was trained on but spatially shift it at test stage by 1, 2, 4, 6, or 16 pixels (Figure
3.1g). The test image now still has the same noise pattern but with a slight offset such that
unit-wise subtraction would be compromised. Even when shifting the noise pattern only by a
single pixel, we observe a big drop in accuracy of about 10%, suggesting that the model relies
on complete subtraction as hypothesized. If the model had learned to generalize to different
noise patterns, we would expect it to perform well on this task. We also test the behavior of the
model when we resample the noise pattern at the test image such that adapter and test noise
differ and accuracy decreases close to chance level (Figure 3.1h). We manually investigated
feature maps in the first layer post-adaptation and noticed that activations are extreme and
differ greatly from activations with repeated noise.

We conclude that the model didn’t learn to generalize to different noise patterns but that
it learned to fully subtract the first image which resulted in all noise being cancelled out
independent of the pattern. This underlines the importance of a mechanistic investigation of
models trained with gradient descent and shows that models can use components in unexpected
ways. It showcases how modeling neural concepts using Al models can create an illusory sense
of interpretability.

In contrast to additive suppression, the divisive model cannot simply subtract the noise. In-
stead, it could learn to zero out all features that were activated by the adapter image but
this could heavily interfere with the image recognition objective which relies on stable nonzero
representations. We repeat the experiments with this model and observe similar effects: «, o,
and K converge to values close to zero, indicating rapid and long-lasting suppression and ac-
curacy decreases if we spatially shift the noise pattern at test step. However, when resampling
the noise, accuracy only decreases moderately (Figure 3.1h) and much less compared to the
additive suppression model, supporting our idea that there is a trade-off between suppressing
features evoked by noise and keeping them responsive to serve the classification task.

Why exactly does this problem arise and how can we train more faithful adaptation models?
In the brain, the amount of adaptation is an optimization problem: While adaptation might be
helpful to adapt to persisting contrast, brightness, or noise settings, it can have negative side
effects. For example, it can create perceptual biases where prolonged exposure to a specific
type of stimulus affects the perception of subsequent stimuli. This happens as the sensory
system becomes desensitized or attuned to certain features. For instance, if someone looks at a
female face for an extended period and then views a gender-neutral face, the neutral face may
appear more masculine [26]. Therefore, adaptation is tuned in strength, length, and maximum
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for optimal visual perception over time. Our noise suppression task, however, only rewards
suppression and there is no incentive to limit the amount of it. Hence, the dataset and task are
too simplistic and do not sufficiently model the challenges that give rise to adaptation patterns
in the brain.

In the subsequent chapter, we propose a methodology to address this issue. We introduce
a more intricate task designed to more closely mimic the real-world challenges that lead to
adaptation in the brain. Our findings demonstrate that models can indeed learn an adaptation
process more akin to that observed in the human brain. We contend that to develop models
that accurately replicate brain functions and circuits, it is crucial to train them with data that
simulates the environmental and sensory conditions believed to drive the brain’s learning of
these functions. Rather than solely focusing on training models for specific tasks that are also
used to test human capabilities, a more effective approach involves training models under con-
ditions similar to human learning experiences. Subsequently, these models should be evaluated
on the same tasks without prior specific training. This approach provides more robust evidence
that the computations and behaviors we observe and study align with our understanding of
their operation in the brain.

3.3 Stimulus-driven salience

When a novel or unexpected stimulus enters the visual field of humans or animals, attention
is rapidly redirected towards it. This process is stimulus-driven and also called bottom-up
attention because it operates on raw sensory input, is involuntary, and shifts attention towards
salient visual features. It is used to filter out unimportant or interfering stimuli and is possibly
driven by temporal divisive normalization: Static scenes and objects might get suppressed over
time while a novel stimulus might evoke the full response, thus dominating the preexisting
stimuli.

Here, we show that an artificial neural network augmented with additive suppression or divisive
normalization capabilities can learn this effect when trained on a task that requires attending
to novel stimuli. Then, we confirm mechanistically what the model learned and how it used its
adaptation capabilities, and lastly, we investigate if brain-like patterns emerge that could form
the connection between neural recordings and behavior.

3.3.1 Adaptation to static objects can drive saliency of novel stimuli

We trained the models on a novel object recognition task where the spatiotemporal model is fed
with a sequence of images that contain one to four objects from fashion-mnist and has to predict
the class of the novel object. If no new object was added, the model should keep predicting
the most recently added object (Figure 3.2a). Thus, in theory, an adaptation model could
solve this task by suppressing recurring input and then using the resulting scale to determine
salience. We trained small CNNs that were augmented with an additive suppression, divisive
normalization, or no adaptation mechanism after the first layer (Figure 3.2b).

Without adaptation, the model had a high accuracy of 72% when only one object was present
but got quickly worse as more images were added. In contrast to this, both adaptation mecha-
nisms were able to learn the task as accuracy barely dropped after adding novel objects (Figure
3.2¢). Accuracy of divisive normalization was slightly higher than exponential decay. We then
investigated the behavior of the model more closely: We constructed a test set that only con-
tained a single fixed object at every position. While the baseline model without adaptation
performed well throughout, accuracy of both adaptation models dropped after position 10 (Fig-
ure 3.2d) which might be explained by the learned suppression effect. Intuitively, sequences of
10 repeating images with no new objects added are rare in the training set, so the model has
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little incentive to optimize these cases, and a strong suppression effect learned by the adaptation
layer could explain the drop in accuracy. Remarkably, the accuracy of the divisive normaliza-
tion model improved after seeing the same image multiple times but we found it difficult to
map this to a specific property of the type of normalization.

Next, we tested the model’s performance around the onset of a novel image. To do this, we
made a test set that contained one object from the first timestep and a novel object that
occurred at steps 2, 5, or 15. Without adaptation, accuracy dropped significantly as the
model cannot know which of the two objects to predict. In contrast to this, accuracy of both
adaptation models remained high and had little change which shows that both models utilize
their recurrent adaptation mechanism to determine the novel object (Figure 3.2e).
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Figure 3.2: CNNs augmented with adaptation can learn a novel object recognition
task end-to-end. a) An example sequence of a single training example with targets b) A
trainable additive suppression or divisive normalization was added after the first convolution c
Accuracy per timestep d) Accuracy per timestep on a test dataset that contained only one static
object per sequence e) Accuracies on a test dataset that contained two objects per sequence
with the second object appearing at onset.

3.3.2 Neuron magnitudes encode salience and is controlled by adap-
tation

What did the adaptation models learn? While we have an intuition about the implemented
mechanisms, this is not necessarily what the model actually learned. Indeed, there are many
examples where a model performed well but for a different reason than assumed (e.g. batch
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normalization [22]) or where a model found a surprising way to solve a task (e.g. reward hacking
in reinforcement learning [24]). In addition, it has been proposed that deep neural networks
encode features in superposition where features are not necessarily basis-aligned and where a
unit-wise suppression mechanism would not suppress features equally [11]. For this reason, we
mechanistically investigated model behavior to show how they utilized the added adaptation
layer.

We hypothesized that the models represent salience in each neuron’s amplitude and that the
adaptation mechanism reduces the amplitude. Indeed, we found that all feature maps decrease
their activations over time when the input stays constant (Figure 3.3a). When tested on a single
repeating object, activations of both adaptation models decreased but divisive normalization
showed more aggressive adaptation. To test if this pattern replicates for multiple objects, we
tested on a dataset comprised of two images where the second image occurs 2, 5, or 15 timesteps
after the first. We recorded activations of layer 1 post adaptation and divided each feature map
into each object’s receptive field (Figure 3.3c left panel). Activations of the first image were
high at onset and continuously decreased irrespective of the second object. However, activations
of the second object’s receptive field only deflected with onset, reached the same magnitude,
and then started to decline while staying higher than activations of the first image (Figure 3.3c
right panel).

Is the relationship between activation size and salience causal? To test this, we intervened on
activations post-adaptation and changed each receptive field’s activations to match the scale
of the other one. We then measured the predicted probability of each object with and without
intervention (Figure 3.3d). After intervention, the model’s predictions were essentially swapped
and the model assigned a higher probability to the first image which occurred earlier in context.
Thus, we have shown that both adaptation models decrease activations on repeating input and
that this is how the model encodes the novelty of objects.

3.3.3 Contrast contributes to neuron magnitudes

In the brain, contrast contributes to the salience of an object. This raises the question of how
the adaptation models encode images of different contrasts and if that interferes with salience.
Initially, we hypothesized that the model might learn different computational paths for images
of different contrasts but showed in supplementary experiments that this is not the case. CNNs
utilize the same feature maps for objects of one class but with vastly different contrasts. To
investigate if contrast is represented by activation magnitude, we tested again on a dataset
containing only a fixed object per sequence. Although accuracy is initially comparable between
contrasts (Figure 3.3e), accuracy decreases faster over time for low-contrast objects, hinting
at interference between contrast and salience. In addition, activation magnitudes scale with
contrast (Figure 3.3f), so activations of low-contrast images vanish faster. Interestingly, there
is a large difference in the range of values: while contrast directly translates to activation mag-
nitude for divisive normalization and thus utilizes the range perfectly, differences in activations
are much smaller for the additive suppression model. This hints at a possible advantage of divi-
sive normalization: Adaptation scales effectively with magnitude while the additive suppression
model subtracts values directly proportional to the previous activation scale which would lead
to vastly different results if the range is too big. This behavior also replicates on objects added
to preexisting ones (Figure 3.3g).

3.3.4 Adaptation effects are stronger in later layers

So far, we focused on tasks that are solvable with a single normalization layer. This was
possible because images of an object stayed fixed for every timestep, so a single adaptation
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Figure 3.3: Mechanistic Understanding of Adaptation a) Activations of a representa-
tive feature map b) Activations normalized to first timestep at full contrast c) Left panel:
Representative field for first (red) and second (green) image; Right panel: Activations by rep-
resentative field and onset of the second image d) Left panel: Example intervention that swaps
the scale of the representative fields; Right panel: Accuracy per object (grey) and accuracy
after intervention (red) e) Accuracy by contrast on a test set containing only one static object
f) Normalized Activations by contrast on a test set containing only one static object g) Nor-

malized Activations by contrast and receptive field of the novel image on a test set containing

two objects with the second (green) occurring later than the first (red)
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layer was sufficient to pick up recurring inputs perfectly and suppress these. However, in the
wild, a neuron is unlikely to receive the same inputs multiple times. Instead, visual stimuli
are specked with small changes in noise, contrast, and brightness, or the location of the image
shifts slightly. For example, a low-level edge detector’s output in V! or the first convolution
will be vastly different if the input image is moved just a tiny bit. In the human visual cortex,
adaptation effects are greater in later layers and it is hypothesized that this is because later
layers with larger receptive fields can integrate their input and "repair” the small deviations
4], [15].

Previously, Vinken et al [26] showed that normalization is greater in later layers in Alexnet
augmented with additive adaptation. For example, in an oddball sequence, later layers showed
a greater change for the deviant stimuli, and a logistic face classifier changed its prediction
after adaptation more in later layers. However, they used pre-trained Alexnet with hardcoded
adaptation parameters which were tuned to produce desired effects. Thus, their observations
are a direct result of their paradigm and they didn’t show if and how a model trained with
adaptation could benefit from this mechanism.

Here, we aim to close the gap between low-level circuits and the resulting capabilities and show
that an adaptation model does indeed develop greater adaptation in later layers. To mimic real-
world scenarios better, we added various sources of noise to the images, for example, shifts,
zoom, shears, rotations, contrast, and Gaussian noise (Figure 3.4a). Because inputs to the
same units in the first layer can now vary between positions, this task is not solvable with
a single normalization layer. Instead, we now introduce adaptation with separate learnable
parameters after every convolution (Figure 3.4b). The divisive normalization and additive
suppression models are able to learn the task well with stable accuracy across positions (Figure
3.4¢). Figure 3.4d shows that the models learn to suppress previously shown images. To assess
the degree of adaptation, we record activation magnitudes in every layer (Figure 3.4e). As
hypothesized, we find that later layers exert a higher relative drop in magnitudes, suggesting
that adaptation builds up across layers.

But is this effect a consequence of adaptation acting in different layers or did the convolutions
simply learn to scale down small input even further without using additional normalization?
To test this causally, we scaled activations of a given layer L to be constant across timesteps.
Then, we recorded post-layer L + 1 to see if there is suppression occurring in layer L + 1
(Figure 3.4g). Interestingly, we found that this is the case for layers 0 and 1, supporting the
hypothesis that task-driven models can utilize normalization across multiple layers. However,
layer 2 and 3 effectively didn’t utilize their normalization capability. For divisive normalization,
no temporal adaptation is occurring in these layers, and for additive suppression, activations
in both layers increase.

Thus, normalization across layers can solve complex tasks by chaining suppression although
not every layer is effectively utilized given our current training setup.
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Figure 3.4: Adaptation across multiple layers can learn more complex tasks a) Rep-
resentative training sample containing various sources of noise and image augmentations b)
Trainable additive suppression or divisive normalization was introduced after every convolution
c¢) Accuracy per timestep d) A random input sample with activations from one representative
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h) Normalized activations after intervention (g). Labels denote the layer of measurement.
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Chapter 4

Discussion

This study was initiated to identify and understand canonical computations in the brain, which
are fundamental operations widely utilized in neural processing. Canonical computations are
essential not only for processing stimuli but also for influencing and shaping behavior. Our
research specifically focused on temporal adaptation, a mechanism hypothesized to be prevalent
across various neural regions. This form of adaptation involves neuronal responses adjusting
dependent on time from lateral or recurrent afferents, or from itself.

In particular, we concentrated on self-referential temporal adaptation, where a neuron normal-
izes its activity based on historical responses. This study explored two approaches: additive
and divisive normalization. The additive model, aligning with the propositions in [26], suggests
an intrinsic mechanism within neurons for suppression, independent of external connections.
On the other hand, divisive normalization, traditionally associated with lateral or recurrent
neuronal interactions, was implemented in our study to normalize based solely on a neuron’s
historical activity. This implementation points to the potential for such mechanisms to be either
an intrinsic attribute of individual neurons or mediated through recurrent network connections.
Our investigation into these forms of temporal adaptation aimed to contribute to a more com-
prehensive understanding of how neurons can utilize their historical activity for processing
inputs, potentially serving as a model for more complex neural circuitry and behavior.

In this study, we have made significant strides in understanding and implementing adaptation
mechanisms within convolutional neural networks (CNNs). We successfully integrated both
additive and divisive adaptation mechanisms into CNNs, targeting a noise suppression task
designed to enhance the signal-to-noise ratio by suppressing static noise. Although the models
learned this task effectively, our analysis revealed that they primarily relied on subtracting the
noise. This finding suggests that the models do not fully emulate processes similar to those in
the visual cortex, highlighting a divergence in their approach. One of the key insights from our
study is the potency of gradient descent optimization. We observed that gradient descent often
finds unexpected solutions, diverging from our initial hypotheses about how specific layers would
function. This outcome underscores the importance of employing mechanistic interpretability
methods to unravel the actual operations within neural network layers.

Furthermore, we emphasize the necessity of training models in scenarios that closely resemble
real-world conditions, particularly when the goal is to replicate specific brain functions. This
approach ensures that the training encompasses the relevant challenges and complexities in-
herent in the targeted neural operations. To this end, we developed a novel object recognition
task where models were tasked with identifying the most recently added object among multiple
items. This task required the models to balance the level of suppression - enough to distinguish
between new and old elements, but not so much as to lose track of existing information. A
detailed investigation into the models’ internal mechanisms revealed that they use activation
magnitude to encode both contrast and salience. Additionally, we showed that employing mul-
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tiple layers of normalization in a model can be effective for complex tasks where single-layer
approaches fall short. Overall, these contributions provide a deeper understanding of how adap-
tation mechanisms can be incorporated into artificial neural networks, enhancing their ability
to learn and process information in a brain-like manner.

Utilization of multiple adaptation layers: We observed that the model trained on the
novel object task does not effectively use its last two convolutional layers for divisive normal-
ization although we would expect such a behavior in the brain. We think this is likely because
it allocates these layers for other functions, such as rescaling. The more intriguing question,
however, concerns the brain’s processing: while we observe normalization in higher brain areas
like the middle temporal (MT) visual area, it remains unclear if this stems from lower-level
cortices or if higher areas possess their own distinct normalization mechanisms. Our model
displays a pronounced normalization effect in its third layer, even in the absence of apparent
normalization activity. This might occur if the convolutions inherently scale the input about
its magnitude. Observing this in our model suggests the possibility of the brain employing a
similar strategy. It seems plausible that higher brain areas could have independent normaliza-
tion processes to facilitate adaptation to complex stimuli, such as recognizing varying images
of the same individual or processing diverse auditory inputs. Yet, the existence of such mech-
anisms should not be hastily concluded from incomplete experimental data. A more rigorous
investigation is necessary to substantiate these hypotheses.

Choosing the dataset: The training data are arguably the most important ingredient for
training AI models. This is often underappreciated as data collection is expensive and time-
consuming while often not directly delivering novel scientific findings. Here, we need to choose
between training on toy datasets with simple and engineered data, or information-dense real-
world datasets, in our case large video databases. While training on data that is similar to what
humans see might give more comparable and more similar results, these models are inherently
messy and difficult to interpret and test. Toy datasets, however, are readily interpretable but if
they lack crucial complexity, the resulting models might not capture the desired effect, as seen
in this study. For temporal adaptation specifically, datasets must at least have the following
complexities:

1. Advantageous Adaptation: Adapting must provide information that is valuable with
respect to the task the network is trained on. This ensures that the adaptation mechanism
contributes positively to the model’s performance.

2. Resensitization: There must be an advantage to sensitize the model again after a certain
period. Without this, the model may converge to low values of a, K, and ¢ (and high g
in the case of additive adaptation), leading to complete suppression without recovery.

3. Restriction of Adaptation: It is crucial to limit the extent of adaptation. In our
model, this was implemented by requiring the network to continue outputting the latest
object, thereby incentivizing the model to restrict the degree of suppression. Without
such a restriction, the model might learn to achieve complete suppression quickly.

4. Layer-Specific Adaptation in Complex Datasets: When applying adaptation in
multiple layers of a CNN, the dataset needs to be complex enough to necessitate layer-
specific adaptation. Early layers typically learn simple features like edges or textures,
while later layers learn complex features such as faces or objects. Adaptation in early
layers is beneficial if the stimulus to be suppressed is detectable at that level. Conversely,
learning adaptation in the final layers is advantageous if it provides new information that
earlier layers could not discern.

In this study, we showed how a too shallow dataset can collapse adaptation layers and poten-
tially lead to an illusory sense of understanding. Then, we constructed a novel dataset that
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contained these challenges and showed that the resulting models have brain-like attributes.
However, while there is a strong incentive to limit the amount of adaptation, the incentive to
resensitize after a stimulus disappears might not be strong enough because objects in the image
aren’t overlapping. To compensate for this, we should consider longer datasets with objects
disappearing and other objects appearing at the same location. This would create a real in-
centive for the model to optimize between continuing or lifting the suppression and should lead
to more interesting models. For example, with such a model, it would be possible to study
aftereffects, like the adapter class biasing the prediction for the test object. It would also be
possible to add noise or set contrast in a way that correlates between subsequent timesteps.
This could lead to response enhancement by suppressing noisy repeating stimuli.
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